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Abstract
We show that parametric level correlations in random-matrix theories are closely
related to a breaking of the symmetry between the advanced and the retarded
Green functions. The form of the parametric level correlation function is the
same as for the disordered case considered earlier by Simons and Altshuler and
is given by the graded trace of the commutator of the saddle-point solution with
the particular matrix that describes the symmetry breaking in the actual case of
interest. The strength factor differs from the case of disorder. It is determined
solely by the Goldstone mode. It is essentially given by the number of levels
that are strongly mixed as the external parameter changes. The factor can easily
be estimated in applications.

1. Introduction

Parametric level correlations in chaotic and disordered systems received much attention in the
early 1990s (see the review [1] and references therein). This development culminated in the
seminal work of Simons and Altshuler [2], who showed that such correlations have a universal
form and who calculated some of the correlation functions for disordered systems explicitly.

In the present paper, I take a fresh look at this problem. This is motivated by two
circumstances. (i) The work of Simons and Altshuler does not address level correlations
of random matrices (but rather of chaotic and/or disordered systems). But level correlations
of random matrices do play a role in some applications of random-matrix theory. A case in
point concerns correlations of levels with different spins in atomic and nuclear systems [3].
While the form of the correlation function obtained by Simons and Altshuler is expected to
be unchanged, it is necessary to determine the dimensionless parameter which governs its
behaviour, and to connect that parameter with physical parameters of the system at hand. In
particular, the concept of ‘level velocities’ introduced by Simons and Altshuler needs to be
reconsidered. It will be shown that, in contrast to the case of disorder, the strength parameter in
random-matrix theory is not influenced by a coupling of the Goldstone mode with the massive

0953-8984/05/201881+07$30.00 © 2005 IOP Publishing Ltd Printed in the UK S1881

http://dx.doi.org/10.1088/0953-8984/17/20/015
mailto:Hans.Weidenmueller@mpi-hd.mpg.de
http://stacks.iop.org/JPhysCM/17/S1881


S1882 H A Weidenmüller

modes. (ii) Parametric level correlations can be seen as a manifestation of symmetry breaking.
The broken symmetry is that between the advanced and the retarded Green functions. I aim at
a presentation which displays this fact as clearly as possible. With this insight, writing down
the form of the correlation function is quite straightforward.

The correlation functions will be given for the GOE and for the GUE. The results are also
compared with the two-point correlation function for the GOE → GUE transition caused by
time-reversal symmetry breaking. We shall see that, in the latter case, symmetry breaking acts
differently.

2. Formulation of the problem

The ensemble of Hamiltonians H has the form

H = H1 cos(X) + H2 sin(X), (1)

where X is a dimensionless parameter and where H1 and H2 are uncorrelated random matrices
belonging to the same symmetry class of one of Dyson’s three canonical ensembles. We wish
to calculate the parametric correlation function

k = tr

[
1

E+
1 − H (X)

]
tr

[
1

E−
2 − H (X ′)

]
. (2)

The overbar denotes the ensemble average. The function k contains quantitative information
about the way in which the spectra at parameter values X and X ′ are correlated. For X = X ′,
k coincides with the standard two-point correlation function.

Both in the case of disordered systems and in the present case, one needs to calculate k
only for small values of |X − X ′|, i.e., perturbatively. The reason is that we are interested
in local (rather than global) changes of the spectrum. The former involve an energy scale of
order d , the mean level spacing; the latter, an energy scale of order Nd where N → ∞ is the
dimension of the matrices H1 and H2. Then, the function k = k(ε, X − X ′) depends only upon
the difference ε = E1 − E2 of the energies of the two Green functions.

I expand the Hamiltonians H (X) and H (X ′) in equation (1) around the mid-point
X0 = (1/2)(X + X ′) in powers of X − X0 = (1/2)(X − X ′) and of X ′ − X0 = (1/2)(X ′ − X),
respectively, and keep only terms up to first order in (X − X ′). Then,

H (X) ≈ H0 + (1/2)(X − X ′)V ,

H (X ′) ≈ H0 − (1/2)(X − X ′)V ,
(3)

where H0 = H (X0) and where

V = H2 cos(X0) − H1 sin(X0). (4)

The random matrices H (X0) and V are uncorrelated,

H0V = 0. (5)

This follows from the fact that H1 and H2 are uncorrelated, H1 H2 = 0.
To identify the small parameter of the expansion, I define (as usual) the spreading width

due to the perturbation as

�↓ = 2π(X − X ′)2V 2/d. (6)

The spreading width is a measure of the energy interval within which the levels of H get
strongly mixed as the parameter changes from X to X ′. We are interested in values of �↓
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which are of the order of d (rather than Nd). We normalize the variances of H1 and H2 in the
usual manner,

(H j)µν
(H j)νµ

= λ2

N
; j = 1, 2; µ �= ν, (7)

where µ and ν are level indices, and where 2λ is the radius of the semicircle. The mean level
spacing of H0 in the centre of the semicircle is given by d = πλ/N . With these conventions,
we have

�↓ = 2(X − X ′)2λ. (8)

We shall see that the dimensionless parameter which governs the level correlation function is
given by �↓/d = (2/π)N(X − X ′)2. For this parameter to be of order unity, we must have
that (X − X ′)2 is of order 1/N . This justifies our perturbation expansion and the fact that we
keep only linear terms in (X − X ′).

Substituting H (X) and H (X ′) from equations (3) into equation (2) yields

k(ε, X − X ′)

= tr

[
1

E+
1 − H0 − (1/2)(X − X ′)V

]
tr

[
1

E−
2 − H0 + (1/2)(X − X ′)V

]
. (9)

Equation (9) displays explicitly the fact that the perturbation V breaks the symmetry between
the retarded and the advanced Green functions. This is essential for the supersymmetry
calculation of k(ε, X − X ′).

3. Supersymmetry

The supersymmetry method [4, 5] has become a standard tool in random-matrix theory.
Therefore, I confine myself to giving the essential steps in the calculation. I do so for the
case where both H1 and H2 belong to the GOE, and give only results for the GUE.

I proceed as in [5],also use their notation, and arrive at the following form of the generating
function,

Z(E1, E2; X, X ′, J ) =
∫

d[�] exp{L(�, J )}, (10)

where the Lagrangian is given by

L = (1/2)i(�† L1/2 DJ L1/2�). (11)

Here DJ is a graded matrix of dimension 8, given by

DJ = (E − H + iδ + J − (1/2)E). (12)

According to equation (3), the matrix H has the form

H = H (X0)18 + (1/2)(X − X ′)V L . (13)

Here 18 denotes the unit matrix in eight dimensions, while

L = diag(1, 1, 1, 1,−1,−1,−1,−1) (14)

is the matrix which breaks the symmetry between the advanced and the retarded Green
functions. We want to calculate the two-point function, and accordingly put

J = δµνdiag(− j1,− j1, + j1, + j1,− j2,− j2, + j2, + j2) = δµν(j1, j2). (15)

The last equation defines (j1, j2).
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The ensemble average is given in terms of the second moment of the term
(i/2)(�† L1/2HL1/2�),

[(i/2)(�† L1/2HL1/2�)]2 = −(λ2/(2N))
∑
µναβ

(
�†

µα(L1/2)αα(L1/2)αα�να

)

× (
�

†
νβ(L1/2)ββ(L1/2)ββ�µβ

)
− (λ2/(8N))(X − X ′)2

∑
µναβ

(
�†

µα(L1/2)αα Lαα(L1/2)αα�να

)

× (
�

†
νβ(L1/2)ββ Lββ(L1/2)ββ�µβ

)
. (16)

The summation over α, β runs from 1 to 8, that over µ, ν from 1 to N . I define

Aαβ = iλ
∑

µ

(L1/2)αα�µα�
†
µβ(L1/2)ββ

+ (1/8)(X − X ′)2iλ
∑

µ

Lαα(L1/2)αα�µα�
†
µβ(L1/2)ββ Lββ. (17)

This equation clearly displays the separate contributions from H0 and from the symmetry-
breaking term V L. Under neglect of higher-order terms in (X − X ′)2 (which we have shown
to be negligible for N → ∞), the right-hand side of equation (16) can be expressed in terms
of A, yielding

[(i/2)(�† L1/2HL1/2�)]2 = 1

2N
trgα(A2). (18)

The Hubbard–Stratonovitch transformation yields now for Z the form

Z(E1, E2; X, X ′, J ) =
∫

d[σ ] exp

{
− N

4
trgα(σ

2) − N

2
trgα ln N(J )

}
, (19)

where

N(J ) = E18 − (1/2)E + iδ − λ� + (j1, j2) (20)

and

� = σ + (1/8)(X − X ′)2 Lσ L . (21)

We use the saddle-point approximation, omitting terms which are of order 1/N . These are the
terms proportional to E , to (X ′ − X)2, and the source terms. The saddle-point equation

σ = λ

E18 − λσ
(22)

has the standard solution

σG = T −1
0 σ 0

DT0 (23)

with σ 0
D diagonal and given by

σ 0
D = E

2λ
− i�0 L (24)

and �0 = √
1 − (E/(2λ))2. The full sigma matrix is written as

σ = σG + δσ = σG + T −1
0 δPT0. (25)

It remains to work out the integrals over the massive modes, and over the Goldstone mode.
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4. Integration over the massive modes

In applications of the supersymmetry formalism, one would normally skip the present section
because the integration over the massive modes is known to simply yield a constant. However,
in the work of Simons and Altshuler [2], it is shown that the strength of the parametric level
correlation function depends upon contributions due to the coupling of the Goldstone mode
with the massive modes. Is such a mechanism also operative in the present case? To answer
this question, I substitute in equations (19) and (20) for � the expression (21) and in the latter
for σ the expression (25). I expand in powers of δσ and of the small entities E, (X ′ − X)2

and (j1, j2) and keep terms up to the second order in δσ and up to first order in the other small
entities. Some of the linear terms in δσ cancel because of the saddle-point condition. The
exponent in equation (20) takes the form

− N

4
trgα [δσ ]2 +

N

4
trgα [σGδσ ]2 +

Nε

4λ
trgα [σG L]

− N

2λ
trgα

[
σG(j1, j2)

]
+

N

16
(X − X ′)2trgα

[
(σG L)2

]

+
N

16
(X − X ′)2trgα [σG Lδσ L] +

Nε

4λ
trgα [σGδσσG L]

− N

2λ
trgα

[
σGδσσG(j1, j2)

]

+
N

16
(X − X ′)2trgα

[
σGδσ (σG L)2 + σGδσσG Lδσ L

]

+
Nε

4λ
trgα

[
σG L(σGδσ )2] − Nε

2λ
trgα

[
σG(j1, j2)(σGδσ )2]

+
N

16
(X − X ′)2trgα

[
(σG L)2(σGδσ )2] . (26)

The leading terms in (δσ )2 are the first two terms in expression (26). These terms show that
all massive modes have mass N . We recall that N(X − X ′)2 is of order unity. Therefore, the
remaining terms which are quadratic in δσ are negligible. The terms linear in δσ are all at most
of order unity. To be non-negligible, they ought to be of order

√
N . In the limit N → ∞ we

are, thus, left with the first five terms in expression (26). This shows that the massive modes
decouple from the Goldstone mode. Moreover, the massive-mode contribution attains exactly
the form given in [5] and can, therefore, be integrated out without any problem. Hence, in
contrast to the disorder problem studied in [2], the massive modes do not contribute to the
strength of the parametric level correlation function in random-matrix theory.

The result for Z is

Z(E1, E2; X, X ′, J ) = 4
∫

d[σ ] exp

{
+

πε

4d
trgα(σG L) +

N

16
(X − X ′)2trgα(σG L)2

}

× N2

8λ2

(
trgα[(j1, j2)σG]

)2
. (27)

I carry out the differentiation with respect to j1 and j2. The result is

k(ε, X − X ′) = (1/2)

∫
d[σ ] exp

{
+

πε

4d
trgα(σG L) +

N

16
(X − X ′)2trgα(σG L)2

}

× π2

d2
(trgα[I (1)(σG)1,1])(trgα[I (2)(σG)2,2]). (28)

The indices 1, 1 and 2, 2 restrict the σ -matrix to the first (the last) four rows and columns,
respectively.
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5. Integration over the Goldstone mode

Our result equation (28) differs from the standard expression for the GOE two-point function
by an additional term appearing in the exponent. Using equation (8), we rewrite this term in
the form

+
N

16
(X − X ′)2trgα(σG L)2 = +

π�↓

64d
trgα[([σG, L])2]. (29)

Once again, the right-hand side of this equation shows very clearly that the term is due to the
symmetry breaking caused by the perturbation.

In the four graded traces appearing on the right-hand side of equation (28), the only
matrices which break the pseudounitary symmetry are I (1) and I (2). Therefore, the two
graded traces in the exponent depend only upon the ‘eigenvalues’ (remaining integration
variables). I use the parameterisations of both [5] and [4] to work out Z in the middle of
the spectrum where �0 = 1.

For the parameterisation of [5] I find

k(ε, X − X ′) ∝
∫ ∞

0
dλ1

∫ ∞

0
dλ2

∫ 1

0
dλ

(1 − λ)λ|λ1 − λ2|
((1 + λ1)λ1(1 + λ2)λ2)1/2(λ + λ1)2(λ + λ2)2

× exp

{
− iπε

d
(λ1 + λ2 + 2λ) − π�↓

4d
(λ1 + λ2 + 2λ)(1 + λ1 + λ2 + 2λ)

}

× (λ1 + λ2 + 2λ)2. (30)

For the parameterisation of [4], the two terms in the exponent take the form

iπω

d
(λ − λ1λ2) − π�↓

4d
(2λ2

1λ
2
2 − λ2

1 − λ2
2 − λ2 + 1). (31)

The first term agrees with Efetov’s equation (5.35) if the definition of x following this equation
is taken into account. The combination of integration variables appearing in the second term
is the same as given by Simons and Altshuler.

Hopefully, the derivation given above shows very clearly the role of symmetry breaking in
parametric level correlations. The result confirms our expectation: the form of the parametric
level correlation function is the same as for the disordered case. The strength factor differs and
is given by π�↓/(4d). Except for the numerical factor π/4, this result, too, corresponds to
naive expectations: �↓/d is a measure of the number of levels which are strongly mixed with
each other as the external parameter changes from X to X ′. In applications, this parameter can
be estimated in terms of the strength of the perturbation and of the local mean level spacing.

6. General aspects of symmetry breaking

I now address more fully the symmetry-breaking mechanism which occurs when one considers
parametric level correlations between two Hamiltonian ensembles H1 and H2 (symbolically
denoted by H1 ←→ H2). I do so in several situations with the intention of exhibiting the
underlying similarities and differences. I consider the following cases: (i) GOE ←→ GOE;
(ii) GUE ←→ GUE; (iii) GOE ←→ GUE. In the last case, the two Hamiltonians H1 and H2

obviously do not belong to the same symmetry class. For the sake of comparison, I consider
also (iv) the two-point autocorrelation function for the GOE → GUE transition [6]. Proceeding
as before, I calculate the resulting contributions to the effective Lagrangean (i.e., the additional
symmetry-breaking terms in the exponent). These are jointly denoted by S and referred to as
the parametric correlator. The commuting (c) and anticommuting (a) integration variables are
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arranged as follows: for the GUE two-point function, the sequence is (c, a, c, a), while for the
GOE, it is (c, c, a, a, c, c, a, a). I define the graded matrix

T3 = diag(+1,−1, +1,−1; +1,−1, +1,−1). (32)

Case (i) has been considered above. The parametric correlator was found to have the form
S(i) = trg{([σG, L])2}. Case (ii) is formally very similar and leads to the same expression,
except that now σG and L have dimension four rather than eight. In case (iii), we get the
GUE by adding to the GOE matrix in the advanced Green function an imaginary random
matrix. Thus, the new term in the exponent arises only from the advanced Green function
(and not from both the retarded and the advanced Green function, as in the previous cases (i)
and (ii)). Moreover, the new term carries the matrix τ3 as the signal for the breaking of GOE
symmetry and suppression of the Cooperon mode. As a result, the relevant term has the form
S(iii) = trg{([σG, (18 − L8)T3])2}. Case (iv) leads to a symmetry-breaking term of the form
S(iv) = trg{([σG, T3])2}. This obviously differs from S(iii). I observe that all these parametric
correlators have the same form, trg{([σG, Tx])2}, with Tx given by

Ti = L8,

Tii = L4,

Tiii = (18 − L8)T3,

Tiv = T3.

(33)

In summary, we have shown that the parametric correlation functions in random-matrix
theory have a very simple form. Each one is obtained from the standard two-point function for
level correlations by adding in the exponent of the generating function a term. That term is given
by the graded trace of the commutator of the saddle-point solution σG with the particular matrix
that describes the symmetry breaking in the actual case of interest. Except for a numerical
factor which is of order unity, the factor in front of the commutator is given by �↓/d .
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